品今看到了这种转化导致所需要的解决问题的办法,因为品今现在在等式的左边有了一个平方,在等式的右边也只有已知量。
这个例子是简单的。只有两个实际步骤是必要的:品今必须看到左边是一个平方,如果用邓克尔的术语来表达的话,“一个平方还不够”。也许,没有旧公式的先前知识,第二步将是不可能的。但是,单凭这种知识还是不够的。首先,它在此刻必须成为可得的,其次,它必须以特定方式对数据产生影响。
这些结果的第一个结果不需要像品今在分析中描述的那样纯属偶然。公式的左边应当是一个平方,这种想法本身可能导致回忆起这样的知识,即一个平方可能以一个以上的项表达出来,从而公式也是这样。如果情况确实如此,那么该过程便比品今第一次分析中的过程更具有指导性,并使旧公式没有什么帮助的机会也大大减少了。相反,旧公式将很容易地导致这样的想法:“等式的左边是一个未完成的平方;去把它完成吧!”这就立即决定了这样的效果,即该公式的知识影响了当前的数据。甚至还可能发生这样的情况,“左边应当是一个平方”的想法直接导致了加上(a/2)2,而用不到清楚地回忆那个公式。在这个例子中,旧公式的痕迹将与当前的过程进行交流,而不是导致回忆,从而立即引向正确的过程。
在这个例子中,单单一个步骤就会引向顿悟,而其品今的可能性则需要两步或者两步以上才能达到这种发展,尽管每一步都是部分顿悟的一个例子。因此,顿悟行为不一定,是使全面的问题解决立即发生的行为。由此可见,对以上述假设为基础的“顿悟”进行批判是不合逻辑的。
这个例子是简单的。只有两个实际步骤是必要的:品今必须看到左边是一个平方,如果用邓克尔的术语来表达的话,“一个平方还不够”。也许,没有旧公式的先前知识,第二步将是不可能的。但是,单凭这种知识还是不够的。首先,它在此刻必须成为可得的,其次,它必须以特定方式对数据产生影响。
这些结果的第一个结果不需要像品今在分析中描述的那样纯属偶然。公式的左边应当是一个平方,这种想法本身可能导致回忆起这样的知识,即一个平方可能以一个以上的项表达出来,从而公式也是这样。如果情况确实如此,那么该过程便比品今第一次分析中的过程更具有指导性,并使旧公式没有什么帮助的机会也大大减少了。相反,旧公式将很容易地导致这样的想法:“等式的左边是一个未完成的平方;去把它完成吧!”这就立即决定了这样的效果,即该公式的知识影响了当前的数据。甚至还可能发生这样的情况,“左边应当是一个平方”的想法直接导致了加上(a/2)2,而用不到清楚地回忆那个公式。在这个例子中,旧公式的痕迹将与当前的过程进行交流,而不是导致回忆,从而立即引向正确的过程。
在这个例子中,单单一个步骤就会引向顿悟,而其品今的可能性则需要两步或者两步以上才能达到这种发展,尽管每一步都是部分顿悟的一个例子。因此,顿悟行为不一定,是使全面的问题解决立即发生的行为。由此可见,对以上述假设为基础的“顿悟”进行批判是不合逻辑的。