很多人都知道,红色水草需要的是蓝光和绿光,而绿色水草需要的则是红光。低色温的灯管在红光区很强,随着色温的增高,红光区不断减弱,蓝光区不断增强。在所有水族灯中
只有LED水族灯能达到色温、颜色光谱、波段可调控。
不同光波对水草二氧化碳的利用率也不同 水草要进行光合作用的先决条件是要有光。除了光以外,还需要水和二氧化碳才能将它们合成糖类。水中的二氧化碳在不同的LED水族灯的光波段中被水草利用的比率都是不相同的。
太阳光谱中的可见光是一种复色光,由红、橙、黄、绿、蓝、靛、紫等七种单色光组成,它们的波长由紫到红排列约在380-760 nm之间。这些单色光组成的复合光谱,依其组合强度不同,遂产生不同质量的可视光,称为光质。LED水族灯可发出各种颜色光,在光颜色中绿光对促进光合作用的效率最差,如果光质中含有太多的绿光,它的效率一定会较低。
水草的叶绿素有两种,分别是叶绿素a、叶绿素b 。叶绿素b无法直接参与光合反应,它的功能仅在于将所吸收的光能传送给叶绿素a ,只能称为「附属色素」,而叶绿素a则能直接参与光合反应,称为光合反应的「主要色素」,所以在促进光合反应的功能上,叶绿素a要优于叶绿素b;不过叶绿素b也有助于水草能吸收更宽广的光谱带。叶绿素a及叶绿素b在构造上稍异,对光能的吸收率也不尽相同,不过它们都能吸收红、蓝光以提供光合作用所需的光能,因此水草最容易进行光合作用的光谱区,是红光区及蓝光区。其中叶绿素a在蓝光区的吸收高峰位于430nm处,在红光区则位于660nm处,而叶绿素b的吸收高峰在蓝光区位于435nm处,在红光区则位于643nm处。
水草叶绿素的含量以叶绿素a的含量最多,约占75﹪以上,它的吸收光谱为水草生长所需要的主要光谱。如果光谱的组合强度,越接近叶绿素a的吸收光谱,将最易被水草充分利用于光合作用之上,因此叶绿素a的吸收光谱遂被称为是促进光合作用的「最佳光合波段」。从水草栽培的角度而言,在选择光源时,LED水族灯的光质越接近叶绿素a的吸收光谱者越佳,例如,LED生长灯的光质通常依照叶绿素a的吸收光谱仿制的,所以理论上对栽培水草最有利。
其中以位于红光波段利用二氧化碳的比率最高,紫光波段次之,然后是橙、靛、蓝、黄、绿等光波。在红光下,水草利用二氧化碳的比率最高可达到95%,但是在绿光下,水草利用二氧化碳的比率仅60%左右。因此红光波段不仅是水草进行光合作用最佳的光能区之一,也是水草利用二氧化碳最高的作用区。
本文来自泛科科技
只有LED水族灯能达到色温、颜色光谱、波段可调控。
不同光波对水草二氧化碳的利用率也不同 水草要进行光合作用的先决条件是要有光。除了光以外,还需要水和二氧化碳才能将它们合成糖类。水中的二氧化碳在不同的LED水族灯的光波段中被水草利用的比率都是不相同的。
太阳光谱中的可见光是一种复色光,由红、橙、黄、绿、蓝、靛、紫等七种单色光组成,它们的波长由紫到红排列约在380-760 nm之间。这些单色光组成的复合光谱,依其组合强度不同,遂产生不同质量的可视光,称为光质。LED水族灯可发出各种颜色光,在光颜色中绿光对促进光合作用的效率最差,如果光质中含有太多的绿光,它的效率一定会较低。
水草的叶绿素有两种,分别是叶绿素a、叶绿素b 。叶绿素b无法直接参与光合反应,它的功能仅在于将所吸收的光能传送给叶绿素a ,只能称为「附属色素」,而叶绿素a则能直接参与光合反应,称为光合反应的「主要色素」,所以在促进光合反应的功能上,叶绿素a要优于叶绿素b;不过叶绿素b也有助于水草能吸收更宽广的光谱带。叶绿素a及叶绿素b在构造上稍异,对光能的吸收率也不尽相同,不过它们都能吸收红、蓝光以提供光合作用所需的光能,因此水草最容易进行光合作用的光谱区,是红光区及蓝光区。其中叶绿素a在蓝光区的吸收高峰位于430nm处,在红光区则位于660nm处,而叶绿素b的吸收高峰在蓝光区位于435nm处,在红光区则位于643nm处。
水草叶绿素的含量以叶绿素a的含量最多,约占75﹪以上,它的吸收光谱为水草生长所需要的主要光谱。如果光谱的组合强度,越接近叶绿素a的吸收光谱,将最易被水草充分利用于光合作用之上,因此叶绿素a的吸收光谱遂被称为是促进光合作用的「最佳光合波段」。从水草栽培的角度而言,在选择光源时,LED水族灯的光质越接近叶绿素a的吸收光谱者越佳,例如,LED生长灯的光质通常依照叶绿素a的吸收光谱仿制的,所以理论上对栽培水草最有利。
其中以位于红光波段利用二氧化碳的比率最高,紫光波段次之,然后是橙、靛、蓝、黄、绿等光波。在红光下,水草利用二氧化碳的比率最高可达到95%,但是在绿光下,水草利用二氧化碳的比率仅60%左右。因此红光波段不仅是水草进行光合作用最佳的光能区之一,也是水草利用二氧化碳最高的作用区。
本文来自泛科科技