①在实数范围内分解
a^4+1=(a^2+1)^2-2a^2=(a^2+√2a+1)(a^2-√2a+1)
②在复数范围内分解
x^4+1=0即x^4=-1=cosπ+isinπ的4个根是
x1=cos(π/4)+isin(π/4)=√2/2+√2i/2
x2=cos(3π/4)+isin(3π/4)=-√2/2+√2i/2
x3=cos(5π/4)+isin(5π/4)=-√2/2-√2i/2
x4=cos(7π/4)+isin(7π/4)=√2/2-√2i/2
∴x^4+1=(x-x1)(x-x2)(x-x3)(x-x4)