失踪的正方形谜题是一种用于数学课的视错觉,有助于学生对几何图形的思考。它描述两种面积板块形状组合,每个显然的都构成一个13X5直角三角形,不过其中一个里头有个1x1的孔。
根据美国业余数学大师马丁·加德纳指出,本谜题是在1953年是由纽约市业余魔术师保罗·嘉理(Paul Curry)发明的。不过裁切悖论的原理自从1860年代就已为数学家所知了。
这谜题的关键是实际上两个13x5的多边形并不是三角形,目测不容易察觉到红色和蓝色三角形斜边的斜率有差别。 因此误以为两个组合成的图形都是三角形。
四个图形(黄色、红色、蓝色和绿色图形)总共占32个单位面积,但是外面总三角形是宽13高5,合计32.5单位。蓝色三角形长宽比为5:2,红色三角则是8:3,并且这些不是同一个长宽比。因此在每个图中外观上加成后的斜边实际上缩短了。
总共缩短的长度大约是一单位的28分之一,这在此谜题示例图上很难以看出。注意在蓝色红色斜边交界处的网格点,如果将它与另一张图的对应交界点比较,边缘稍稍溢出或者低于格点。来自两张图重叠后溢出的斜边导致一个非常细微的平行四边形,占据了刚好一格大小的面积,恰恰是第二张图“消失”的区域。