忌水言吧 关注:6贴子:3,128

忌水言趣谈

只看楼主收藏回复

我就是来水的!!!


IP属地:湖南1楼2014-06-09 23:27回复
    看见丽君两个字,我第一个想起的不再是邓丽君,而是我们傻傻的三傻,丽君妹纸。
    @忌am_


    IP属地:湖南2楼2014-06-09 23:28
    收起回复
      看见兰州,我想起的再不是烧饼,而是我们傻傻的大傻
      @慎独谨言


      IP属地:湖南本楼含有高级字体3楼2014-06-09 23:30
      收起回复
        看见二或者傻,我想起的是傻傻的二傻,我自己。
        @水穷处和云起时


        IP属地:湖南4楼2014-06-09 23:31
        收起回复
          发现我真的好喜欢水和云,我最喜欢的一句诗是行到水穷处,坐看云起时。
          我最喜欢的一副对联(是对联么?反正当初我看的书是把它当对联啦,也许就是一首诗的颔联而已)
          是:此心平静如流水,放眼高空看过云。


          IP属地:湖南5楼2014-06-09 23:33
          回复
            丽君妹纸总是一副谦虚的样子,而且总是神龙见首不见尾,大傻二傻聊着聊着就发现她不见了。
            大傻和二傻都是自恋又喜欢拌嘴的两只傻瓜,好几次争论到最后,大傻都会非常委屈地说:好吧,你赢啦 o(╯□╰)o!
            弄得好像本傻欺负了他似的,弄得他好像非常宽宏大量似的,这是本傻非常不待见大傻的地方,争论还分什么输赢,直接转移话题不就得了。


            IP属地:湖南6楼2014-06-09 23:38
            收起回复
              丽君妹纸我还真不知道有什么口头禅,
              大傻的口头禅就是:
              ①怒斥
              ②这是常识
              ③真是猪头
              我本来没有什么口头禅,但是跟大傻争论多了,现在也有几个
              ①怒斥(学来的)
              ②又是猪头理论
              姑且这么多吧,以后再八,丽君妹纸要勤快一些噢,真八不出什么关于丽君妹纸的事情来


              IP属地:湖南7楼2014-06-09 23:43
              收起回复
                二傻,你最近好高产


                IP属地:安徽来自Android客户端8楼2014-06-09 23:54
                收起回复
                  用它来解酒哈。。。
                  。。。。何以解忧,唯有杜康。。。。


                  来自WindowsPhone客户端9楼2014-06-10 00:07
                  收起回复
                    妹子们睡觉吧!明天还要上课呐@忌am_ @水穷处和云起时 你这位同学,明天还要high呢!


                    10楼2014-06-10 00:37
                    收起回复
                      我是来捣乱滴。
                      大傻三傻可否记得,大傻应该还记得吧,二傻我说要买微积分教材,今天已经拍下了,二位快来道喜吧,这是本傻最喜欢的数学教材。让乃们看看封面以及目录。
                      @慎独谨言 @忌am_

                      是不是正版偶就不清楚了,反正没人买过,没有评价,店家的总体评价还过得去,最主要的是最便宜哈,但又不至于便宜到一定是盗版的程度。
                      大傻可一定要看看后面的目录,三傻也要看噢,你的四级就是这周末吧 好吧,三傻可以不看的,这个对考四级没有任何帮助啦。


                      IP属地:湖南11楼2014-06-10 09:29
                      收起回复
                        目录来鸟,大傻要不要试着翻译翻译,我相信大傻可以的,三傻就可以看看有哪些单词认得。
                        好吧,本来想考考大傻的,但是淘宝上的目录简直丧心病狂,我一看,哎哟,这是神马单词,我也看不懂,原来是全部是错的,比如“number”写成“numbe",“function”写成“functio”,老是没有最后一个字母,算了,还是不考乃们了。
                        要不书来了我再一一敲上来考考大傻也行。
                        其实好多我们当时也没有学完,学完的又二又傻的二傻也不一定记得住。
                        不过二傻有一个特点,一本英文原版和一本翻译的中文版,我会毫不犹豫地选择英文原版,不为别的,就为英文原版看得懂。
                        大傻三傻估计要傻眼了,英文原版看得懂,这不就是开玩笑么?
                        还真是这样的,当初计量经济学我就买了对应的中文原版,可是一同学问我一个问题,我先翻的中文版,那一段文字看了四五遍,硬是摸不着头脑,后来干脆直接上英文原版,居然一遍就懂了。
                        有时候翻译的人同样丧心病狂,水平不够,所以翻译出来的书就深奥很多了,其实就是没讲明白,那些水平不够的翻译者有时候就是误人子弟啊!!
                        这也是看惯英文原版的二傻喜欢英文原版的原因,不是因为二傻词汇量有多么丰富,更不是二傻英语有多么牛逼,二傻我连基本的英语口语都忘记的差不多了,要二傻考四级,过不过还是一个问题呢
                        二傻只是养成一种不需要懂单词就看得懂书的能力,就像二傻不喜欢记单词,英语阅读理解一大堆生词,但二傻仍然会得高分或者满分一个道理。(哎,不过经过对比发现,二傻的词汇量其实还是不少的,所以有可能二傻的不认识单词照样看得懂书的魂淡逻辑不一定成立,别误导了三傻。)
                        大傻考研才考英语,三傻还在准备四级,只有二傻我又二又傻地好久没有看英语了(我们大三大四的很多书都变中文版了,老师也很少讲英文了),说不定此时的二傻最英语白痴啦。


                        IP属地:湖南12楼2014-06-10 09:52
                        收起回复
                          Preface
                          0 Preliminaries
                          0.1 Real Numbers,Estimation,and Logic
                          0.2 Inequalities and Absolute Values
                          0.3 The Rectangular Coordinate System
                          0.4 Graphs of Equations
                          0.5 Functions and TheirGraphs
                          0.6 Operationson Functions
                          0.7 Trigonometric Functions
                          0.8 Chapter Review
                          Review and Preview Problems
                          1 Limits
                          1.1 Introduction to Limits
                          1.2 Rigorous Studyof Limits
                          1.3 Limit Theorems
                          1.4 Limits Involving Trigonometric Functions
                          1.5 Limitsat Infinity;Infinite Limits
                          1.6 Continuity of Functions
                          1.7 Chapter Review
                          Review and Preview Problems
                          2 The Derivative
                          2.1 Two Problems with One Theme
                          2.2 The Derivative
                          2.3 Rules for Finding Derivatives
                          2.4 Derivatives of Trigonometric Functions
                          2.5 The Chain Rule
                          2.6 Higher-Order Derivatives
                          2.7 Implicit Differentiation
                          2.8 Related Rates
                          2.9 Differentials and Approximations
                          2.1 0 Chapter Review
                          Review and Preview Problems
                          3 Applications of the Derivative
                          3.1 Maxima and Minima
                          3.2 Monotonicity and Concavity
                          3.3 Local Extrema and Extrema on Open Intervals
                          3.4 Practical Problems
                          3.5 Graphing Functions Using Calculus
                          3.6 The Mean ValueTheorem for Derivatives
                          3.7 Solving Equations Numerically
                          3.8 Antiderivatives
                          3.9 Introduction to Differential Equations
                          3.1 0 Chapter Review
                          Review and Preview Problems
                          4 The Deftnite Integral
                          4.1 Introduction to Area
                          4.2 The Definite Integral
                          4.3 The First Fundamental Theorem of Calculus
                          4.4 The Second Fundamental Theorem of Calculus and the Method of Substitution
                          4.5 The Mean Value Theorem for Integrals and the Use of Symmetry
                          4.6 Numerical Integration
                          4.7 Chapter Review
                          Review and Preview Problems
                          5 Applications of the Integral
                          5.1 The Area of a Plane Region
                          5.2 Volumes of Solids:Slabs,Disks,Wlashers
                          5.3 Volumes of Solids of Revolution:Shells
                          5.4 Length of a Plane Curve
                          5.5 Work and Fluid Force
                          5.6 Moments and Center of Mass
                          5.7 Probability and Random Variabtes
                          5.8 Chapter Review
                          Review and Preview Problems
                          6 Transcendental Functions
                          6.1 The Natural Logarithm Function
                          6.2 Inverse Functions and Their Derivatives
                          6.3 The Natural Exponential Function
                          6.4 General Exponential and Logarithmic Functions
                          6.5 Exponential Growth and Decay
                          6.6 First-Order Linear Differential Equations
                          6.7 Approximations for Differential Equations
                          6.8 The Inverse Trigonometric Functions and Their Derivatives
                          6.9 The Hyperbolic Functions and Their Inverses
                          6.1 0 Chapter Review
                          Review and Preview Problems
                          7 Techniques of Integration
                          7.1 Basic Integration Rules
                          7.2 Integration by Parts
                          7.3 Some Trigonometric Integrals
                          7.4 Rationalizing Substitutions..
                          7.5 Integration of Rational Functions Using Partial Fractions
                          7.6 Strategies for Integration
                          7.7 Chapter Review
                          Review and Preview Problems
                          8 Indeterminate Forms and Improper Integrals
                          8.1 Indeterminate Forms of TypeO/O
                          8.2 Other Indeterminate Forms
                          8.3 Improper Integrals:Infinite Limits of Integration
                          8.4 Improper Integrals:Infinite Integrands
                          8.5 Chapter Review
                          Review and Preview Problems
                          9 Infinite Series
                          9.1 Infinite Sequences
                          9.2 Infinite Series
                          9.3 Positive Series:TheIntegral Test
                          9.4 Positive Series:Other Tests
                          9.5 Alternating Series,Absolute Convergence, and Conditional Convergence
                          9.6 Power Series
                          9.7 Operationson Power Series
                          9.8 Taylor and Maclaurin Series
                          9.9 The Taylor Approximation to a Function
                          9.1 0 Chapter Review
                          Review and Preview Problems
                          10 Conics and Polar Coordinates
                          10.1 The Parabola
                          10.2 Ellipses and Hyperbolas
                          10.3 Translation and Rotation of Axes
                          10.4 Parametric Representation of Curves in the Plane
                          10.5 The Polar Coordinate System
                          10.6 Graphs ofPolar Equations
                          10.7 Calculus in Polar Coordinates
                          10.8 Chapter Review
                          Review and Preview Problems
                          11 Geometry in Space and Vectors
                          11.1 Cartesian Coordinates in Three-Space
                          11.2 Vectors
                          11.3 The Dot Product
                          11.4 The Cross Product
                          11.5 Vector-Valued Functions and Curvilinear Motion
                          11.6 Lines and Tangent Lines in Three-Space
                          11.7 Curvature and Components of Acceleration
                          11.8 Surfaces in Three-Space
                          11.9 Cylindrical and Spherical Coordinates
                          11.1 0 Chapter Review
                          Review and Preview Problems
                          12 Derivatives for Functions of Two or More Variables
                          12.1 Functions Of Two or More Variables
                          12.2 Partial Derivatives
                          12.3 Limits and Continuity
                          12.4 Differentiability
                          12.5 Directional Derivatives and Gradients
                          12.6 The Chain Rule
                          12.7 Tangent Planes and Approximations
                          12.8 Maxima and Minima
                          12.9 The Method of Lagrange Multipliers
                          12.1 0 Chapter Review
                          Review and Preview Problems
                          13 Multiple Integrals
                          13.1 Double Integrals over Rectangles
                          13.2 Iterated Integrals
                          13.3 Double Integrals over Nonrectangular Regions
                          13.4 Double Integrals in Polar Coordinates
                          13.5 Applicationsof Double Integrals
                          13.6 Surface Area
                          13.7 Triple Integrals in Cartesian Coordinates
                          13.8 Triple Integrals in Cylindrical and Spherical Coordinates
                          13.9 Change of Variables in Multiple Integrals
                          13.1 0 Chapter Review
                          Review and Preview Problems
                          14 Vector Calculus
                          14.1 Vlector Fields
                          14.2 Line Integrals
                          14.3 Inde Dendence of Path
                          14.4 Greens Theorem in the Plane
                          14.5 Surface Integrals
                          14.6 Gausss Divergence Theorem
                          14.7 Stokess Theorem
                          14.8 Chapter Review
                          Appendix
                          A.1 Mathematical Induction
                          A.2 Proofs of Several Theorems
                          @慎独谨言 @忌am_ 如果二傻要执行逃离计划,那数学就靠它了,如果不执行,这本书就当一个纪念,纪念它陪我走过的大一一年的数学学习时光。


                          IP属地:湖南13楼2014-06-10 10:26
                          收起回复
                            oh, my god,此吧回复最多的三个贴子都是本傻的水贴,看来我该收敛了,偶午休去鸟,大傻早就午休了,三傻如果还没有休息的话,也去眯一会吧。


                            IP属地:湖南来自Android客户端14楼2014-06-10 13:23
                            回复

                              残酷な天使のテーゼ - 高桥洋子


                              15楼2014-06-11 00:55
                              回复