若0<a1<1,an+1=an+an^2/n^2.求证{an}有界.
证:若0<t<1,且an≥n*t^(n+1),则an+1≥n*t^(n+1)+t^(2n+2).
由均值不等式n+t^(n+1)=1+1+···+1+t^(n+1)≥(n+1)t ①
得an+1≥(n+1)*t^(n+2).所以取t=√a1,即得an≥n*t^(n+1).
由1/an+1=1/an-1/(an+n^2),有1/an=1/a1-(k=1,n-1)∑1/(ak+k^2)≥1/a1-(k=1,n-1)∑1/k[k+t^(k+1)],由①有1/an≥1/a1-(k=1,n-1)∑1/t*k(k+1)=1/a1-1/t(1-1/n)>1/a1-1/t=1/a1-1/√a1,故an<a1/(1-√a1).
证:若0<t<1,且an≥n*t^(n+1),则an+1≥n*t^(n+1)+t^(2n+2).
由均值不等式n+t^(n+1)=1+1+···+1+t^(n+1)≥(n+1)t ①
得an+1≥(n+1)*t^(n+2).所以取t=√a1,即得an≥n*t^(n+1).
由1/an+1=1/an-1/(an+n^2),有1/an=1/a1-(k=1,n-1)∑1/(ak+k^2)≥1/a1-(k=1,n-1)∑1/k[k+t^(k+1)],由①有1/an≥1/a1-(k=1,n-1)∑1/t*k(k+1)=1/a1-1/t(1-1/n)>1/a1-1/t=1/a1-1/√a1,故an<a1/(1-√a1).