逆逆数学吧 关注:11贴子:50
  • 1回复贴,共1

一道数列题

只看楼主收藏回复

若0<a1<1,an+1=an+an^2/n^2.求证{an}有界.
证:若0<t<1,且an≥n*t^(n+1),则an+1≥n*t^(n+1)+t^(2n+2).
由均值不等式n+t^(n+1)=1+1+···+1+t^(n+1)≥(n+1)t ①
得an+1≥(n+1)*t^(n+2).所以取t=√a1,即得an≥n*t^(n+1).
由1/an+1=1/an-1/(an+n^2),有1/an=1/a1-(k=1,n-1)∑1/(ak+k^2)≥1/a1-(k=1,n-1)∑1/k[k+t^(k+1)],由①有1/an≥1/a1-(k=1,n-1)∑1/t*k(k+1)=1/a1-1/t(1-1/n)>1/a1-1/t=1/a1-1/√a1,故an<a1/(1-√a1).


来自Android客户端1楼2014-04-07 17:37回复
    另证:由0<a1<1,
    归纳得an≤n*a1对任意n成立.
    又an+1>an,得
    an+1=an+an^2/n^2
    <an+an+1*an/n^2,
    同除an*an+1,得:
    1/an<1/an+1+1/n^2.
    故1/an<1/an+p+[1/n^2+1/(n+1)^2+···+1/(n+p-1)^2]<an+p+1/(n-1).
    即1/an+p>1/an-1/(n-1)>1/n*a1-1/(n-1).
    取n足够大,使得1/n*a1-1/(n-1)>0,固定n,则m>n时,am有界,故数列{an}有界.


    来自Android客户端3楼2014-04-22 15:54
    回复