本大叔精神永存吧 关注:166贴子:5,636

意志的武力与艺术——二战德国俾斯麦级战列舰性能解析

只看楼主收藏回复

鸣谢一巴掌拍死七个


IP属地:北京1楼2012-06-27 18:20回复
    前言:
    NC德国的武力象征之一的俾斯麦战舰,在它战沉后的六十多年里一直倍受世人赞誉,从作为敌人的英国首相到全世界大多数军迷都折服于 它带来的巨大震撼,在多数海军专家心中它也是一艘优秀的战舰,被誉为不沉的海上钢铁城堡。但掌声和欢呼中难免会有夸大,一些军迷把俾斯麦硬推上了世界战列 舰的王座(注1),使它在盛名之下其实难符,随即遭到另一部分逆反心理严重的军迷所仇视,他们聚集到一起,书写各种尖酸的文字贬低这艘军舰,称之为全世界 性能最糟糕的新式战列舰。这些矫枉过正、非红即黑、极端情绪化对待学术问题的态度贻害深远,现在国内的军史论坛和书籍上,但凡关于俾斯麦战舰的文字不是极 度的褒扬就是极度的贬损,竟难以找到一篇适中反映实际的。笔者所以写此文,是希望通过从技术和实效上解析这条战舰,还原历史的本来面目。
    一、建造背景及过程
    1935 年3月德意志帝国元首阿道夫.XTL发表重大宣言,宣布废弃凡尔赛条约恢复征兵制,德国再武装正式开始。同年6月,为了表示无意向英国挑战,德国主动向英 国提出把德国海军舰艇的总吨位限制在英国海军的35%,英国马上同意并与之签订了《英德海军条约》。这解除了德国海军的最后一道枷锁,德国海军开始大扩 军,在建造5只旧战舰代舰中的第4、5艘的同时在1935、1936年度开工建造代号为“F”级的战舰,一级真正的战列舰,它就是后来闻名遐尔的“俾斯 麦”级。
    在1934年德意志级装甲舰服役后德国开始对真正的新式战列舰进行设计论证,同年克掳伯公司开始了280mmSKC/34、 380mmSKC/34、403mmSKC/34三种新型主力舰炮的设计工作。到了1935年XTL发表德国再武装宣言时,德国开始正式进行新战舰的建 造,首先就是5只老式战舰替代舰中的第4、5艘,预定从1935年开始在1937年-1941年完工,于是从1935年3月开始了沙恩霍斯特级战列巡洋舰 的建造工作,这离一战结束相隔16年半时间。同年6月随英德海军条约的签订,德国能够建造3.5万吨级装备406mm主炮的新型战列舰,随即开始了俾斯麦 级的建造。
    德国主力舰的划分标准与英国不同,战列舰与战列巡洋舰的区别主要在于火力和航速,而装甲以及舰体结构是按照相同的标准设计的。 沙恩霍斯特级战列巡洋舰的舰体设计直接来源于一战末期德国马肯森级战列巡洋舰的增强型约克级战列舰,而俾斯麦的舰体设计是在沙恩霍斯特级的基础上进一步加 强和完善而来。这一点从约克级、到沙恩霍斯特级、到俾斯麦级的线形以及舰体结构图的变化上也可以看出来,并不是一些人误传的直接改进自巴伐利亚级战列舰, 巴级和俾级在线形、尺度以及装甲布置上相去甚远,最多可以算是俾级的一个鼻祖。
    从上至下为巴伐利亚级、约克级、沙恩霍斯特级、俾斯麦级的线图:
    


    IP属地:北京2楼2012-06-27 18:21
    回复

      俾斯麦级战列舰随吨位的加大采用了更多的水密隔仓和更厚的隔仓钢板,舱室布置、装甲布置、防雷结构布置以及上层建筑布置则大量参照了沙恩霍斯特级 战列巡洋舰(注2)。采取以上措施后德国人在沙级开工后不到8个月也就是1935年11月就开始了俾级的建造工作,这离一战结束正好相隔17年时间。
      1938 年5月德国海军得到指示将于1948年对英开战,1939年1月XTL选定“Z计划”为德国海军发展计划,随即开始实施。同年4月德国宣布废弃英德海军条 约,全力开始了大舰建造,分别于同年7月、8月开始为两艘更强大的标准排水量高达6.25万吨的“H”级超级战列舰铺设龙骨。从科隆到柯尼斯堡密布的高炉 群日夜加温,强大的工业帝国再次爆发出惊人的能量,一直下去它们将熔化整个欧洲大陆和英伦三岛。但在不久以后,第二次世界大战随着德国石勒苏宜格-霍尔斯 坦因号旧式战列舰上11英寸大炮的鸣响而提前爆发,宏伟的Z计划成为浮云,完成大半的两条“H”级超级战列舰被解体去打造苏德战场的滚滚钢铁洪流,只剩下 硕果仅存的两条俾斯麦级战列舰,它们在战争中成为一代传奇。
      1939年2月14日这个光荣的日子,当时世界上最大的战舰完工下水,德国人 以创造德意志第二帝国的伟人“铁血首相”奥托.冯.俾斯麦命名这艘战舰,希望它能开创德国海军的新篇章。俾斯麦战舰伟岸而优雅的舰体缓缓划下船台,起源于 东方古老文明的图腾符号刻画在它的甲板上,其无所畏惧的装甲和所向无敌的炮群即将成为对手心中的梦魇。它是引领电气工业革M的帝国工业技术的展示品,是条 顿民族意志、武力与艺术的承载体,内在本质与外部历史都推动着它去书写齐格菲式的悲剧英雄故事,天生如此。


      IP属地:北京3楼2012-06-27 18:21
      回复
        二、基本技术数据和图纸(*为提尔皮茨号)
        1、建造
        建造公司 Blohm & Voss
        建造地点 Hamburg(汉堡)
        建造代号 BV 509
        开工时间 1935年11月16日
        完工时间 1939年02月14日
        服役时间 1940年08月24日
        2、舰体
        官方公布排水量 35000 吨
        实际标准排水量 41700 吨
        设计满载排水量 49400 吨
        实际满载排水量 50900 吨
        实际满载排水量 52900 吨 *
        舰体长度 250.5 米
        水线长度 241.55 米
        舰体宽度 36 米
        舰体型深 15 米
        实际标准吃水 9.00 米 (at 41700 t)
        设计满载吃水 10.2 米 (at 49400 t)
        实际满载吃水 10.4 米 (at 50900 t)
        实际满载吃水 10.7 米 (at 52900 t) *
        舰体次要结构用钢 St42造船钢
        舰体主要结构用钢 St52造船钢
        防雷装甲用钢 Ww高弹性匀质钢
        水平装甲用钢 Wh高强度匀质钢
        舷侧、炮座、炮塔立面、指挥塔立面装甲用钢 KCn/A表面渗碳硬化钢
        舰底纵向主龙骨17条,高度1.7米,铺设宽度25米,平均间隔1.56米(舯部)
        3、动力系统
        锅炉 12 个高压锅炉 (压力 55 Kg/cm2 温度 475oC)
        主机 3 台涡轮蒸汽轮机
        推进轴 3
        螺旋桨 3 (直径 4.7 m)
        舵 2
        最大设计稳定马力 138000 shp
        最大实测稳定马力 150170 shp
        最大实测极速马力 163026 shp
        最大设计巡航速度 28 节
        最大实测巡航速度 30.8 节
        最大实测航行极速 31.5 节
        4、航程
        燃料 标准 3200 M3
        燃料 最大 7400 M3
        航程 8525 海里/19节
        航程 6640 海里/24节
        航程 4500 海里/28节
        5、装甲
        俾斯麦装甲布置全析图:
        上部舷侧装甲 145mm KCn/A
        主舷侧装甲 320mm KCn/A
        舰尾水线装甲 80mm Wh
        舰首水线装甲 60mm Wh
        主防雷装甲 45mm Ww
        首尾横向装甲 100-320mm KCn/A
        内部横向装甲 20-60mm Wh
        内部纵向装甲 30mm Wh
        上装甲甲板 50-80mm Wh
        主装甲甲板 80-120mm Wh
        尾装甲甲板 110mm Wh
        弹药库侧壁装甲 30mm Wh
        弹药库底部装甲 40mm Ww
        主炮座 露天340mm KCn/A 上部舰体内220mm KCn/A 下部座圈50mm Wh
        主炮塔 正面360mm KCn/A 侧面220mm KCn/A 顶部130-180mm Wh 背面320mm KCn/A
        副炮座 露天80mm Wh 上部舰体内20mm Wh
        副炮塔 正面100mm KCn/A 侧面40mm Wh 顶部40mm Wh 背面40mm Wh
        高炮塔 正面15mm Wh 侧面15mm Wh 顶部15mm Wh 背面 —
        指挥塔 立面350mm KCn/A 顶部220mm Wh 底部70mm Wh
        备用指挥塔 立面150mm KCn/A 顶部50mm Wh 底部30mm Wh
        装甲了望塔 立面60mm Wh 顶部20mm Wh 底部20mm Wh
        舰体侧面装甲总厚度 475-485mm(不考虑倾角的绝对厚度)
        舰体水平装甲总厚度 130-200mm
        防雷系统抵抗力 300kg hexanite 烈性炸药
        主装甲区长171米 占水线全长70%
        舷侧装甲高8.4米 占舷侧全高56%


        IP属地:北京4楼2012-06-27 18:21
        回复

          6、武器装备
          主炮 8门380mm/L52(4座双联)
          副炮 12门150mm/L55(6座双联)
          重型高炮 16门105mm/L65(8座双联)
          中型高炮 16门37mm/L83(8座双联)
          轻型高炮 18门20mm/L65(2座4联、10座单装)
          轻型高炮 78门20mm/L65(18座4联、6座单装) *
          鱼雷 6管533mmG7aT1(2座3联) *
          7、弹药储备
          380mm炮弹 960发(每门120发)
          150mm炮弹 1800发(每门150发)
          105mm炮弹 6720发(每门420发)
          37mm炮弹 32000发(每门2000发)
          20mm炮弹 由20mm机炮数量决定
          533mmG7aT1鱼雷 24枚 *
          8、火控设备
          10.5 m 基线测距仪 4 (1940) 5 (1941)
          7 m 基线测距仪 1
          6.5 m 基线测距仪 2
          4 m 基线测距仪 4
          3.7 cm flak 炮上
          2 cm flak 炮上
          9、探测设备
          FuMO 23 雷达 3
          探照灯 7
          10、航空设备
          弹射器 舰体中间1部
          水上飞机 4 架 Ar196A-3
          11、辅助装备
          起重机 2大 2小
          锚 3 2船首 1船尾
          12、人员
          103军官
          1962水兵+27人
          13、重量分配:
          舰体结构 11691 吨 (占标准排水量的28%)
          装甲 17450 吨 (占标准排水量的41.85%,不包含炮塔旋转部分装甲)
          动力 2800 吨 (占标准排水量的6.7%)
          辅助装备 1428 吨 (占标准排水量的3.45%)
          武器装备 5973 吨 (占标准排水量的14.3%,包含炮塔旋转部分装甲,每座主炮塔旋转部分重1052吨)
          以上总和为空载排水量,合计 39342 吨
          航空设备 83 吨
          自卫武器 8 吨
          普通装备 369.4 吨
          船员居住设备 8.6 吨
          桅杆和索具 30 吨
          弹药 1510.4 吨 (占标准排水量的3.6%)
          自卫武器的弹药 25 吨
          一般消耗品 155.4 吨
          人员和个人物品 243.6 吨
          以上总和为法定标准排水量,合计 41775.4 吨
          预备物品 194.2 吨
          一般出海任务
          饮用水 139.2 吨
          设备用水 167 吨
          锅炉用水 187.5 吨
          重油 3226 吨
          柴油 96.5 吨
          润滑油 80 吨
          航空用油 17 吨
          长期出海任务(如不携带会注入等重的海水或淡水,以维持军舰的稳性)
          锅炉用水 187.5 吨
          重油 3226 吨
          柴油 96.5 吨
          润滑油 80 吨
          航空用油 17 吨
          以上总和为法定满载排水量,合计 49489.8 吨
          预备用水 389.2 吨
          俾斯麦在莱因演习时额外加了1000吨燃油,实际满载排水量增大到约50900吨。


          IP属地:北京5楼2012-06-27 18:22
          回复
            三、装甲及舰体构造材料
            在汉堡建造中的俾斯麦的照片:


            IP属地:北京7楼2012-06-27 18:24
            回复
              Wh(Krupp Wotan Hart Homogeneous armour steel)高强度匀质钢,于1925年在传统的KNC装甲基础上发明,其中的高性能部分(Wotan Starrheit,简称Wsh)被用于建造俾斯麦的所有水平装甲和首尾水线装甲带以及内部纵横向装甲。到二战时代,它们仍然是硬度、抗拉强度和屈服强度 最高,抗弹性能最好的舰用匀质装甲。其硬度高达250-280HB,抗拉强度为850-950MPa,屈服强度为500-550MPa,延展率20%,是 同时兼顾对炮弹和航空炸弹的穿甲防御以及抵抗大型弹片和爆破冲击波的最理想材料。与St52造船钢的地位相似,Wh装甲的高性能部分明显超过美国 ClassB、英国NCA和意大利NCV(后三者性能基本相等),位于世界最高水平,这在各方面的资料上都没有争议。依靠材料质量优势,提尔皮茨号战列舰 的水平装甲以优异的防弹性能给对手留下了深刻印象。


              IP属地:北京9楼2012-06-27 18:25
              回复
                KCn/A(Krupp cementite new type A)表面渗碳硬化钢,于1928年在传统的KC装甲基础上发展而成,用于建造俾斯麦的舷侧、炮座、炮塔立面、指挥塔立面装甲,是二战时代表面硬度最高,在 中等厚度下防弹性能最好的舰用表面硬化装甲。其表面硬度高达670-700HB,递减渗碳深度为40-50%,基材硬度为240HB,基材抗拉强度为 835-880MPa,基材屈服强度为635-670MPa。大部份人看了《James Cameron's Expedition Bismarck》、《探索欧洲最大战列舰俾斯麦》上的文字以及考察队发行的画册上的图片加上网站warships1上的火炮穿甲数据以后,都确信俾斯麦 的320mmKCn/A主舷侧装甲板抵挡住了绝大部分理论上拥有450-550mm匀质装甲穿深力的盟国战列舰炮弹。克虏伯装甲的领先地位,要追溯到 1895年它的发明之时。新生的德国镍铬锰合金表面渗碳硬化钢立即压倒了全世界所有的装甲,它等效于125%厚度的当时最新式的美国哈维装甲,等效于 208%厚度的之前普遍使用的英国人基于施奈德钢发明的铁钢复合装甲,成为这一时代装甲领域的最高成就。在此后长达半个世纪的时间里,克虏伯装甲始终在同 时期同类产品中占有极高的地位。二战时代在更大厚度上性能唯一超过KCn/A的只有英国用于乔治五世级战列舰立面防护,发明于1935年的 P1935CA(post-1935 casehardening armor)表面渗碳硬化钢。该装甲钢的表面硬度为600HB,递减渗碳深度为30%,基材硬度为225HB,基材抗拉强度为895MPa,基材屈服强度 为635MPa。虽然P1935CA在大部分性能指标上都不如KCn/A,但是它的基材具有更好的韧性和延展性,结合硬度不高的表面和厚度比例不大的递减 硬化层,在厚度大约超过350mm时,P1935CA具有最高的抗弹性能,这是因为在硬化层绝对厚度达到可观水平的前提下,更大厚度的基材的高韧性和高延 展性又得到了很好的发挥。在厚度约为220-350mm的范围内,则是KCn/A抗弹性能最高,这得益于克虏伯能更精确的调整加工工艺来确保装甲品质的优 良与均一。而在厚度更小时,美国同时代的ClassA钢性能有明显提升,该装甲钢的表面硬度为650HB,递减渗碳深度达到55%,基材硬度为 220HB,基材抗拉强度为745-850MPa,基材屈服强度为545-685MPa。尽管其基材性能一般,表面硬度也只是中上水平,但它拥有二战时代 厚度比例最大的装甲硬化层,对战列舰APC炮弹的破坏能力甚至超过硬度最高的德国KCn/A和意大利引进克虏伯技术生产的P1930KC。这使得在 180mm以下的厚度,ClassA拥有较好的防弹能力。但是在战列舰舷侧装甲级别的厚度下,ClassA钢板容易发生碎裂,防弹能力明显不及英国 P1935CA和德国KCn/A。美国佛吉尼亚海军基地,战后对各国舰用表面硬化装甲进行综合性能测评,结论是P1935CA位居世界第一,KCn/A以 微弱劣势屈居第二,ClassA则明显劣于前两者。《USNI》一书中明确记载乔治五世级战舰的P1935CA钢抗弹能力比同时期美国的ClassA钢高 25%左右。介绍俾斯麦战舰的专题网站文章也说KCn/A钢仅略微次于英国的P1935CA钢,远远优于同时期美国的ClassA钢(原文:Post WWII proving ground test indicated that KC was only slightly less resistant than British cemented armour (CA), and markedly superior to US Class A plates)。这些都是基于战列舰舷侧装甲级别的厚度得出的结论。而依照自身装甲的特性,各国舰船设计师都做了所能做的最优选择。英国战列舰选择了 349-374mm大厚度的单层垂直装甲;德国战列舰则选择了300-350mm中等厚度的垂直装甲加上一层强有力的Wh水平装甲;意大利战列舰的KC板 受技术限制无法做得太厚,就在280mmKC板外面再加上一层70mm的全厚度硬化板,也要力求保证每层钢板的质量;美国人自从1933年发明了新式的 ClassA装甲之后,他们的北卡罗来纳级、南达科它级和衣阿华级新式战列舰的舷侧装甲板都恒定在307mm而不越雷池一步。对于装甲抗弹性能,涉及的因 素非常多,从各国的实际做法来看,保证装甲质量的意义十分重大。而在保证装甲质量的前提下,并不是想做多厚就能做多厚(注3),这就是很多国家的军舰装甲 厚度为什么并不符合军迷的数字感观需要的原因。
                造舰冶金材料主要分为结构用钢、匀质装甲钢、表面硬化装甲钢三个类别。综上所述,最好的船 舶结构用钢和最好的舰用匀质装甲钢均出自德国。剩下的舰用表面硬化装甲,在战列舰舷侧装甲级别的厚度上由英德两国平分秋色。至此世界造舰冶金材料技术领域 颠峰地位的六分之五已被德国独自占据,这是打造不沉之舰的坚强后盾。
                二战各国冶金材料的性能水平并非一些人想象或者宁愿的都差不多,而是 差别巨大。即使是战列舰舷侧装甲级别的厚度上的美国ClassA钢,其“国际地位”也并不低,同样是美国佛吉尼亚海军基地的战后测评,日本1942年生产 的信浓留下的备用于舷侧装甲的VH钢,性能只有同时期美国ClassA钢的83.9%。而VH钢是日本最好的舰用表面硬化装甲,日本新式军舰使用得最普遍 的不是VH钢而是改进自英国VC钢的NVNC钢(注4),性能比VH钢还要差不少。前面对比的还仅仅只是表面硬化装甲之间的性能差距,即使是其中已知最差 的NVNC钢,也是基于扎制匀质合金钢板加工而成的表面热处理硬化装甲,优于普通的扎制匀质装甲,而普通的扎制匀质装甲又优于普通的铸造装甲。在此不妨想 想苏联人那些IS2、IS3和T34坦克在极简易条件下由非熟练工人生产的铸钢炮塔的装甲质量如何呢?是不是一些人所说的“都差不多”?如果是,那么苏联 铸钢是与MNC、ClassB、ClassA、KCn/A这些性能相差很多的装甲中的谁差不多?这是题外话了。我们回到主题,即使仅以舰用表面硬化装甲为 例,在战列舰舷侧装甲级别的厚度上,英德钢的性能比美国钢高出25%左右(注5),日本钢则除了最好的少部分与美国钢相当外,大部分都在美国钢的85%以 下,也就是说英德装甲比日本大部分装甲的性能至少高出47%,而二战各国新式战列舰舷侧装甲厚度最低300mm和最高410mm之间仅相差了37%,两者 对抗弹能力的影响正好差不多。即使按照这个很保守的估计,评估战列舰装甲的抗弹能力,对比材料质量的重要性也绝不低于对比材料厚度。这一点很多人都因为缺 乏相关资料而忽略了,他们去依照几十毫米甚至几毫米的战列舰舷侧装甲厚度差为其防护水平排名,今人啼笑皆非。


                IP属地:北京10楼2012-06-27 18:25
                回复
                  补图 提尔皮茨号战列舰火力布置图:


                  IP属地:北京11楼2012-06-27 18:28
                  回复
                    补图俾斯麦号装甲分布


                    IP属地:北京12楼2012-06-27 18:30
                    回复
                      6),而在副炮弹药库和主炮弹药库舱段的主防雷装甲到弹药库壁之间,管线舱和下方的储藏舱一起形成了完整的过滤舱。整体上看,除了弹药库舱段的布置相对还 算严密以外,与同时期其它国家战列舰的防雷结构相比较,俾斯麦的结构要简单得多,设计要求也不高,仅仅为抵御250kgTNT的水下爆破。但出人预料的 是,它在实战中的表现。
                      从1940年7月西非达喀尔“黎塞留”号战例,1941年3月马塔潘角“维内托”号战例,1941年12月南中国 海“威尔士亲王号”战例来看,这些防雷结构复杂,设计要求为抵御300-454kgTNT水下爆破的战列舰,没有一艘能抵御150-176kgTNT装药 的鱼雷攻击(注7)。而1941年5月大西洋上,“俾斯麦”号战列舰被击中了三枚箭鱼式攻击机投下的170kgTNT装药的机载鱼雷,除了阴错阳差的打坏 了无法防御的船舵外,其破坏力均被防雷结构完全抵挡,几乎没有造成任何损伤,这说明俾斯麦防雷结构的实际抵抗能力远在上述几个国家的同行之上。再根据其它 更严峻的受打击情况,国外专题网站上的技术介绍文章明确表示认为其实际能力远远超过设计要求的防御250kgTNT水下爆破(原文:Overall, the torpedo defence system was designed to resist a TNT charge of 250 kg although its resistance actually proved to be considerably higher than that)。德国海军在1944年11月12日关于提尔皮茨损失的222-45号技术报告上指出它的TDS(Torpedo defence system)能抵挡300kg德国hexanite烈性炸药的水下爆破,可以认为这是该级战舰防雷系统的实际准确防御水平。
                      产生以上结 果的原因,笔者分析有以下两个方面:一方面是St52造船钢的高性能得到了发挥,防雷结构内布置稀疏但厚度不低的St52水密隔板兼顾着优良的鱼雷爆破冲 击波抵抗能力;另一方面是德国人的种族特性体现在了工作习惯上,是近乎于偏执的慎密、严谨、精确,这使得德国武器系统即使在设计上存在不足,也常常被总是 创造奇迹的德国工人弥补回来,虎式坦克和俾斯麦战舰上都发生过这样的事。
                      3、全面防护
                      俾斯麦的主装甲堡长达171米,覆 盖了70%的水线长度,装甲堡侧壁从水线以下3米多处一直延伸到上装甲甲板,在整个舷侧立面的常见被弹部分都布置了厚重的装甲,是二战时代装甲覆盖面积比 例最大的战列舰。其上部2.6米高的舷侧装甲带由厚达145mm的KCn/A钢板制成,与50-80mm的Wh上装甲甲板一同保护着整个位于主装甲堡上部 舰体内的水兵生活和工作区,可以抵挡重巡洋舰的炮弹和中小型航空炸弹。中部是位于水线上下的320mm厚5.2米高的KCn/A钢板制成的主舷侧装甲带, 可以在正常交战距离以材料质量优势独自抵挡大部分战列舰的炮弹。在吃水9.8-10.4米的作战常态重量时,俾斯麦高5.2米的320mm主舷侧装甲有 2.6-3.2米被埋在了水下,在320mm主舷侧装甲的下方,还有一道高0.6米均厚为170mm的主舷侧装甲下沿,使该舰拥有深入水下达 3.2-3.8米的舷侧装甲,为其提供了良好的水下防弹能力,炮弹必须在水中穿行很长的距离击中更低的位置才能穿过22mm船壳进入防雷吞噬舱和吸收舱, 这时后面的45mm主防雷装甲板已经能够独立抵挡。
                      在舰体主装甲堡内,位于主装甲甲板以下的空间,设置有8道由厚达20-60mm的Wh 钢板制成的横向内部装甲墙,它们也被同时作为舰体横向结构的一部分。8道装甲墙和首尾两端320mm厚的横向外装甲墙共同把俾斯麦战舰主装甲堡内的下部空 间分为9个重装甲舱段,其中的6道,以30mm的厚度又延伸到上部舰体内,和首尾两端100-220mm厚的横向外装甲墙共同把主装甲堡内的上部空间也分 为7个重装甲舱段。即使有战列舰炮弹或穿甲炸弹射入其中爆炸,弹片受到这些内部装甲的阻挡,破坏力也会被控制在较小范围的空间内。
                      俾斯麦 的舰首和舰尾水线部位分别设有60mm和80mmWh钢制成的轻装甲带,它们会在舰体受到攻击的时候尽可能的保持水线外形的整体完整度,防止舰体表面发生 大面积破碎。俾斯麦在舰首水下被英国战列舰炮弹炸开一个对穿的窟窿,舯部水下外壳被炸开另一个窟窿,还损失了1/6动力的情况下仍然保持了28节的航速。 反观没有舰首水线轻装甲带的武藏号,其舰首水线部位的船壳被一颗航空炸弹撕开破口以后,向外翻卷的钢皮形成了巨大的阻力,使武藏号的航速从27节降为21 节。在一战中积累有丰富实战经验的英国、德国以及法国、意大利等欧洲国家在之后设计的新式主力舰上都设有环绕首尾水线的轻装甲带,只有环太平洋地区的美国 和日本取消了这个设置。日本人在大和级战列舰上甚至连所有战舰都不可缺少的尾部主水平装甲都取消了,仅设立了两个各自独立的主副舵机装甲盒,完全放弃了对 传动轴通道区的装甲保护,依赖运气让敌人的炮弹和航空炸弹不会命中这里。而美国人则认为时代已经进步到军舰能在很远距离以火炮决定胜负的程度,因此仅以质 量一般的单层外倾斜内置舷侧装甲薄板作为新式战列舰的主要防御手段,实战中却总是美国军舰和对手日本军舰咬得最近,反而是没有这个想法的欧洲人总是能在很 远的距离上开炮并区分高下,屡屡刷新主力舰炮战的最远命中记录。在此美国设计师应该感谢日本人那些老旧的性能低劣的舰炮,并感谢日本人舍不得将大和级战列 舰投入到初中时期的海上炮战中。日本人这样设计军舰是因为受到自身工业基础的限制,而美国人则是乐观Z义。
                      二战时代的大部分新式战列舰都 采用了重点防护的方式布置装甲,这是因为它们的装甲比重小,没有多余的装甲去防护非致命部位,保证重点部位不被击穿,是首要的。但是在重点部位能防御敌舰 炮弹的前提下,自然是防护尺度越大越好。全面防护的军舰与重点防护的军舰相比,无论在装甲都能被炮弹击穿还是都不能被炮弹击穿的情况下,都是前者能承受更 多得多的打击量。从照片上看,俾斯麦战舰承受了90发左右22kg、23.2kg装药的战列舰炮弹、310发左右其它炮弹和6-8枚鱼雷的打击后,舰体外 观依然基本完整,而仅仅承受了5发18.4kg装药的战列舰炮弹打击的让.巴尔号,舰体外观已经面目全非。这也证明了一些人所谓的“重点防护军舰的 nothing区域不会引爆APC”的说法纯属幻想。重点防护是一种不得已而为之的举措,并不是军舰的非重点部位真的无足轻重。军舰的理想防护形态是重点 部位防御能力不低于甚至高于重点防护的全面防护,这就是下文即将谈到的二战时代德式军舰的独特防护形态。


                      IP属地:北京14楼2012-06-27 18:52
                      回复

                        5、双层装甲甲板
                        军舰上部舰体的金属板材水平结构,从功能上分为装甲甲板、水密甲板和两用甲板三种(注 9)。装甲甲板由匀质装甲钢制成,具有很高的防弹性能,但其接缝处在受到强力打击后不一定还具有水密功能,所以在其下方铺设有水密甲板。水密甲板由船舶结 构钢制成,具有极佳的韧性和延展性,通常在发生大幅度形变后仍能承担水密作用,即使发生破裂也容易修补,但其材质软,防弹性能低。两用甲板的用材是经硬化 处理过的船舶结构钢,能兼顾防弹和水密的双重作用。当然,它的防弹性能不如纯粹的匀质装甲钢,而水密性能不如纯粹的船舶结构钢,但因为受材料特性限制,厚 度不足的金属板材无法再细分为装甲甲板和水密甲板,所以对其进行功能整合,成为两用甲板,这在美国和意大利战列舰上被广泛采用。
                        


                        IP属地:北京16楼2012-06-27 18:57
                        回复

                          6、火力、火控和指挥系统防护
                          俾斯麦前后各有两座双联装的380mm主炮塔,其炮座露天部分是厚340mm的KCn/A装甲钢圈,国外专 题网站上的技术介绍文章明确写出等效于390-405mm的同时期美国ClassA装甲钢圈(原文:In terms of US Class A armour, the effective resistance of the 340 mm (KC) barbette armour was 390-405 mm),参考衣阿华战舰防御相同舱室的ClassB厚度比ClassA大43%这个差距,保守估计其防护力也应该高于美国衣阿华级战列舰炮座的 439mmCLassB匀质装甲钢圈,这是不了解装甲种类和质量差距的人想不到的。炮座在舰内从80mm上装甲甲板到100mm主装甲甲板之间的部分是厚 220mm的KCn/A装甲钢圈,外围侧面受到145mm-320mm的KCn/A舷侧装甲和30mmWh内部纵向装甲的保护,总厚度为 395-570mm,防御能力高于炮座露天部分。
                          俾斯麦主炮塔旋转部分的正面是360mm的KCn/A装甲板,侧面是220mm的KCn /A装甲板,背部是320mm的KCn/A装甲板,顶部由130-180mm的Wh装甲板覆盖。背部厚达320mm的KCn/A装甲是为了对付数量众多的 敌舰从左右舷侧方向夹攻而设置的,德国和苏联这样海军水面舰艇处于绝对数量劣势的国家都这样布置军舰炮塔装甲,这也是全面防护的一个部分。正面 360mmKCn/A装甲的抗弹能力等效于414mm-432mm的同时期美国ClassA装甲,不会低于美国衣阿华级战列舰主炮塔正面的 63mmClassA+432mmClassB复合装甲,但前上方有一块厚180mm大约60度倾斜的Wh匀质装甲板,承担着炮塔前立面33%左右高度的 防护,在中远交战距离,这里的防御弱于同样防护炮塔前立面的360mmKCn/A装甲板,并且拥有不低于后者的被弹面积,造成了装甲防御的缺陷。由于这一 缺陷的存在,俾斯麦主炮塔旋转部分的装甲防御水平大为降低。
                          但对于主力舰的炮塔防护而言,装甲并不是唯一性的,因为很多时候即使装甲不被 击穿炮塔也会失效,例如武藏号的炮塔因为前部舰体命中航空鱼雷而不能旋转,俾斯麦号的A、B两座炮塔因一枚炮弹在它们之间爆炸而一度卡死,乔治五世号的 A、C炮塔、威尔士亲王号的C炮塔和罗德尼号的炮塔在轰击俾斯麦的过程中发生机械故障,黎塞留号的炮塔在射击中因操作事故炸膛,南达科他号的炮塔则在射击 中因操作事故停电失效。相较之下德国主力舰的炮塔至少在不被重火力击中的情况下是稳定可靠的,没有发生过其它国家主力舰那样严重的机械故障和操作事故。由 于这个原因,主力舰炮塔装甲不被击穿的主要意义在于保护内部机械不被彻底破坏,之后可以修理,而并不是一定能保护军舰在战场上的战斗力。一些人习惯把炮 塔、炮座防护列为和舰体侧面、舰体水平防护同等重要的防御指标,其实在主力舰上前者远远达不到后者的重要程度。另外,这个问题仅发生在主力舰级别的炮塔 上,实战中重巡洋舰以下级别的炮塔可以抵御大量的敌舰同级炮弹直接命中而稳定工作。
                          俾斯麦的主火力系统防护由上至下逐次递增,其顶部是 220-360mm立面装甲的炮塔旋转部分,往下是340mm装甲圈的第一甲板上方露天炮座,再往下是外围装甲总厚395mm的第一至第二甲板中间段炮 座,再往下是外围装甲总厚570mm的第二至第三甲板中间段炮座,最下方是侧面装甲总水平厚度达到685mm的弹药库。尽管俾斯麦的火力系统上部相对容易 被破坏,但并不会因此影响下部的安全。越往下,敌舰的炮弹越难以击穿俾斯麦火力系统的外围防护,而击穿上部的炮弹,爆破威力受到炮座内部多重水平隔层和炮 座下部装甲内圈的阻隔,没有可能引起布置在炮座下部装甲内圈之外的主弹药库发生殉爆。
                          俾斯麦的副炮塔拥有100mmKCn/A的旋转部分 正面装甲和80mmKCn/A的露天炮座装甲,能抵挡轻巡洋舰级别的炮弹。第一甲板下面是145mmKCn/A的上部舷侧装甲带+30mm的Wh装甲座 圈,能抵挡重巡洋舰级别的炮弹。弹药输送通道通过其中一直延伸到穹甲,副炮弹药库位于穹甲下方独立舱段的中央部分内,受到320mm主舷侧装甲和 100-120mm穹甲的保护,能抵挡所有战列舰的炮弹。与主火力系统的防护情况相似,俾斯麦副炮火力系统的防护也是由上至下逐次递增。大部分其它国家的 新式战列舰副炮塔都不具有俾斯麦这样厚重的装甲,这也是德舰全面防护的一个体现。
                          俾斯麦的指挥塔立面装甲为350mmKCn/A,顶部 220mmWh,底部70mmWh。350mmKCn/A装甲等效于403-420mm的同时期美国ClassA装甲,这比439mmClassB匀质装 甲的美国衣阿华级战列舰的指挥塔防护要更强。同时德国战列舰指挥塔的防护空间也比美日战列舰大不少,可以容纳更多的指挥人员和设备。此外该舰在后部舰桥上 还拥有一个立面装甲为150mmKCn/A的备用指挥塔,在主桅楼顶端还拥有一个立面装甲为60mmWh的装甲了望塔,是大部分其它国家的新式战列舰所没 有的。该舰安置在三个装甲塔上方的三个主要探测和火控系统单元也安装有60-200mm不等的立面装甲,防护极为考究。总体上而言,俾斯麦已经是火控和指 挥系统装甲防护最为周全的新式战列舰。


                          IP属地:北京17楼2012-06-27 19:00
                          回复
                            7、生存力和战斗力保护能力总评
                            防护和生存力一直都是德国军舰最显著的性能强项,这与德国海军的设计思想有关,从前无畏时代起,德国军舰 一直就是世界上最重视防御的军舰。德国人不仅在技术上强化了军舰的防御,也在设计取舍上加大了军舰防御的优先性:俾斯麦是二战时代建成战列舰中装甲比重最 大的战列舰,不含炮塔旋转部分的装甲总重量就达到了标准排水量的41.85%;也是二战时代防护尺度最大的战列舰,主装甲堡侧壁覆盖了70%的水线长度和 全部的干舷高度。更可贵的是,德舰的全面防护并非一些人想象的防护面积大但要害部位薄弱,而是在实现大防护尺度的同时,依赖大防护尺度提供的空间补偿下移 主水平装甲,以下沉布置主水平装甲的方式让其与主舷侧装甲一同重叠于弹道上,使要害部位的防护也得到超越一般军舰的强化。除了防护尺度以外,俾斯麦同时还 是二战时代舰体侧面装甲最厚的战列舰,重叠在弹道上的装甲水平厚度达658-685mm,绝对厚度达475-485mm,无论在全舰的防护尺度还是重点部 位的防护厚度上都同时超过了其它国家的所有军舰。
                            如果从经济学的角度考虑,全面防护+穹甲的布置并不是二战军舰防御的最佳形态,但无疑是 最强形态。因为需要很高的装甲比重才能实现,所以仅为对军舰防护要求最高的德国所采用。二战德舰的穹甲是与主水平装甲一体化的穹甲,并不同于大部分旧式战 列舰上广泛使用的穹甲。旧式战列舰的穹甲倾斜部分与水平部分之间的角度很大,防弹效果更接近于垂直装甲而非水平装甲,这一点与二战德舰的穹甲有质的不同。 另外旧式战列舰一般没有主水平装甲这个概念,穹甲很薄,很多不具备独立的防弹作用,只是一层舱壁。而以穹甲作为主要防弹装甲的旧式巡洋舰,存在的问题又是 缺乏主舷侧装甲,仅仅依靠穹甲抵挡炮弹,防护效果自然很差。这些关系在此特别说明,防止一些人在词汇上故意混淆,用笼统的“先进”或“落后”来表述。无论 其它方面怎样争议,德国军舰拥有过人的防护性能是勿庸置疑的。实战中俾斯麦战舰抵挡住了90发左右英国战列舰主炮炮弹和310发左右巡洋舰主副炮和战列舰 副炮炮弹的直接命中,同时承受了6-8枚各型鱼雷的打击,再加上自行开闸放水达1小时才沉没。这是令其它国家任何同级军舰都望尘莫及的性能,难怪英国人在 攻击它的过程中发出了种种惊叹。不止对于俾斯麦,二战英国人在每攻击一艘德国主力舰的时候也都发出了相似的言论,例如攻击提尔皮茨号和沙恩霍斯特号的时 候。这当然应该不是英国人为了支持德迷与仇德者为难而胡说一气,而是在事实面前受到了发自内心的震撼,是对敌人的赞叹与折服,是最来之不易且最具说服力的 证词。
                            从技术上看,俾斯麦成为“不沉之舰”的主要原因有三个:一是德国冶金材料技术和造船工艺的优势,二是巨大的全面防护尺度,三是主舷侧装甲与主水平装甲同时重叠于弹道上的独特布置结构。从实战上看,它无愧于这个称号。
                            以 上所说的是俾斯麦战舰的生存力,关于该舰防御能力争议的主要焦点在于它的战斗力保护能力。事实上从日德兰海战时代开始,德国军舰就表现出生存力大于战斗力 保护能力的现象,这是由于德国人在提高军舰生存力的同时无法随之有效提高战斗力保护能力而造成的。到了二战时代,由于德舰数量的进一步减少,德舰的生存力 被进一步强调,这个差距进一步加大。可以确定俾斯麦的战斗力保护能力远不如自身的生存力,但比其它国家的同级军舰弱吗?
                            与大部分其它国家 战列舰的情况相似,俾斯麦的主炮塔在不被炮弹击穿的情况下也会失效,这就使得即使把炮塔正面装甲的厚度增加到1米也无济于事。除了适当增厚炮塔前上装甲使 之在中远交战距离与360mm前装甲的防护性能相等以外,笔者想象不出如何进一步保护俾斯麦的火力系统,相反是原有的四座主炮塔的设计在一定程度上缓解了 这个问题。俾斯麦的大部分火控系统单元都拥有不同程度的装甲,其中最厚的达到200mm,而且分散布置在比任何其它国家的战列舰都更长的上层建筑上,指挥 系统则设立了三个装甲塔,其中前部指挥塔的350mm装甲拥有很高的防弹性能,种种举措可谓穷尽心智,但是在极端恶劣的情况下仍然避免不了被全部摧毁,这 就是现实。俾斯麦暴露出战斗力保护能力的问题只是因为它受到了任何其它国家的战列舰都不曾受到的火力打击密度和总量,而不是其它国家的战列舰不存在这些问 题,尤其是火控和指挥系统防护俾斯麦总体上还要优于其它国家的战列舰,只是仍然无法达到可以无视战列舰和重巡洋舰炮弹高密度攻击的程度。
                            摆 在眼前的现实是,当时的地球人能够制.造出生存力极强的不沉之舰,但无法制.造出战斗力保护能力也同样强的无敌之舰,德国人唯一能选择的只是要不要建造不 沉之舰。以德国二战时代的国情来看,拥有一种能作为战列舰而尽可能长期存在下去的船比什么都重要,至于在火炮已经足够摧毁对手的前提下是不是还要在战斗中 拥有多一门或者大一寸口径的主炮则显得毫无意义,德国人比谁都更加明白这个显而易见的情况,他们制.造一级战列舰是为了满足自己的需要而不是为了与大洋彼 岸的犹太国战列舰在舞台上去做健美表演。俾斯麦基本上已经是德国的4.2万吨级战列舰所能达到的最佳形态,虽然这不符合一些喜好粗大物体的军迷的感观习惯 和简单思维,但却符合德国的国情。


                            IP属地:北京18楼2012-06-27 19:01
                            回复

                              各国战列舰APC穿甲弹装药量:
                              美国 406mm Mark7 18.4kg
                              美国 406mm Mark6 18.4kg
                              美国 406mm Mark5 15.2kg
                              日本 460mm Type94 33.85kg
                              日本 410mm ------- 14.89kg
                              日本 356mm ------- 11.1kg
                              德国 380mm SKC/34 18.8kg
                              法国 380mm M1935 21.9kg
                              英国 356mm MarkVII 22.0kg
                              英国 381mm MarkI 27.4kg
                              英国 406mm MarkI 23.2kg
                              大 和Type94舰炮穿甲弹的装药量是最多的,达到33.85kg,几乎是美国战列舰的两倍,而被美国军迷称之为大威力的Mark6、Mark7型舰炮的低 速重型穿甲弹装药量只有18.4kg,相反被大家诟病威力弱小的乔治五世级战列舰的14寸舰炮穿甲弹拥有22kg装药。俾斯麦舰炮穿甲弹的装药量为 18.8kg,处于新式舰炮炮弹中的中下水平,但正好比美国衣阿华和南达科它的穿甲弹装药量高一点,这就使得美国战列舰在与俾斯麦的炮战中并不会有一些军 迷所想象的额外的便宜可占,如果不能击穿德舰的穹甲,美国Mark6、Mark7型舰炮的低速重弹对德舰的伤害反而小于英国14、16寸舰炮炮弹。
                              4、主炮命中精度
                              很多人提到火炮军舰的命中精度会简单认为是火炮精度,这是片面的。其实决定军舰射击精度的是火炮精度+射击过程中的军舰稳性,而火炮精度方面大部分工业强国都能达到要求,这个时候后者的作用更为重要。
                              尽 管配备陀螺仪的射击协调系统会保证战列舰的舰炮在舰体处于水平状态的时候才发射,但舰炮齐射为了避开炮口风暴的相互影响,实际上是在一个短时间段内进行的 分别射击,这就使得射击协调过程存在误差,大致上在进行齐射的时间段内,舰体的纵摇幅度决定炮弹着点的横向散布距离,横摇幅度决定炮弹着点的纵向散布距 离。同型号的火炮作为海岸要塞炮比作为舰炮精准得多,因为大地是一个无限稳定的射击平台,而对于火炮军舰,舰体重量和尺度越大,火炮齐射后坐力越小,射击 越精准。实战中大舰小炮的俾斯麦、沙恩霍斯特、希佩尔等级军舰都有骄人的命中率记录,其中沙恩霍斯特号更是创下了海战最远主力舰火炮命中记录—24175 米(厌战号命中意大利战列舰是24140米,为战列舰火炮最远命中记录),并在随后的24175米-23450米距离间,沙格两舰连续命中目标5次以上, 这证明不是靠运气,也证明了一些人说高速轻弹在远距离打不准是胡说。
                              火炮军舰舰体的首要意义是作为火炮的稳定射击平台,俾斯麦舰体重量比重大,拥有36米舰宽,241.5米水线长和巨大的舰体湿润表面积,具有良好的对抗齐射后坐力的承力体系,是一个优良的射击平台。


                              IP属地:北京20楼2012-06-27 19:02
                              回复